Atomic layer deposition for fabrication of HfO2/Al2O3 thin films with high laser-induced damage thresholds
نویسندگان
چکیده
Previous research on the laser damage resistance of thin films deposited by atomic layer deposition (ALD) is rare. In this work, the ALD process for thin film generation was investigated using different process parameters such as various precursor types and pulse duration. The laser-induced damage threshold (LIDT) was measured as a key property for thin films used as laser system components. Reasons for film damaged were also investigated. The LIDTs for thin films deposited by improved process parameters reached a higher level than previously measured. Specifically, the LIDT of the Al2O3 thin film reached 40 J/cm(2). The LIDT of the HfO2/Al2O3 anti-reflector film reached 18 J/cm(2), the highest value reported for ALD single and anti-reflect films. In addition, it was shown that the LIDT could be improved by further altering the process parameters. All results show that ALD is an effective film deposition technique for fabrication of thin film components for high-power laser systems.
منابع مشابه
Characterization of atomic layer deposition HfO2, Al2O3, and plasma- enhanced chemical vapor deposition Si3N4 as metal–insulator–metal capacitor dielectric for GaAs HBT technology
Characterization was performed on the application of atomic layer deposition (ALD) of hafnium dioxide (HfO2) and aluminum oxide (Al2O3), and plasma-enhanced chemical vapor deposition (PECVD) of silicon nitride (Si3N4) as metal–insulator–metal (MIM) capacitor dielectric for GaAs heterojunction bipolar transistor (HBT) technology. The results show that the MIM capacitor with 62 nm of ALD HfO2 res...
متن کاملALD HfO2, Al2O3, and PECVD Si3N4 as MIM Capacitor Dielectric for GaAs HBT Technology
Characterization was performed on 60 nm +/3 nm films of atomic layer deposition (ALD) hafnium dioxide (HfO2) and aluminum oxide (Al2O3), and plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Si3N4) as MIM capacitor dielectric for GaAs HBT technology. The capacitance density of MIM capacitor with ALD HfO2 (2.73 fF/m 2 ) and Al2O3 (1.55 fF/m 2 ) is significantly higher than tha...
متن کاملLaser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs.
We report on extensive femtosecond laser damage threshold measurements of optical materials in both bulk and thin-film form. This study, which is based on published and new data, involved simple oxide and fluoride films, composite films made from a mixture of two dielectric materials, metallic films, and the surfaces of various bulk materials: oxides, fluorides, semiconductors, and ionic crysta...
متن کاملPlasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases
Hafnium dioxide films have been produced by plasma ion assisted electron beam evaporation, utilizing argon or xenon as working gases. The optical constants of the layers have been investigated by spectrophotometry, while X-ray reflection measurements (XRR), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) have been performed with selected samples. The corre...
متن کاملHigh-k/SiO2 Interface Charge Characterization for ALD Tools
Atomic Layer Deposition (ALD) has become a popular thin film deposition technique due to atomic level thickness control and reproducibility. Recent literature has reported different types of charges that arise at SiO2/high-k interface which can substantially affect device performance. In this study, we characterized the charge densities for films deposited by CV studies for Savannah ALD. We dev...
متن کامل